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Abstract

Global warming is one of the biggest threats that humans face in the 21st century,

and it is imperative that action is taken to reduce emissions of greenhouse gases such

as Methane and Carbon Dioxide. In order to efficiently reduce the impact that humans

make on the environment, proper modelling and calculations of the environment must be

undertaken, and the effects of greenhouse gases must be quantified. These calculations

include the ability to quantify different gases in terms of another. This report explores

the mathematics which are used to calculate the effects of greenhouse gases on the warm-

ing and the earth, and explores how accurately these effects may be approximated for

simplified usage in different models and frameworks such as The Kyoto Protocol.
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1 Introduction

In order to halt the rising temperature of the earth, The Kyoto Protocol establishes six green-

house gases (GHGs) which must be controlled, including Carbon Dioxide (CO2), Methane

(CH4), and Nitrous Oxide (N2O). The influence of GHGs’ warming of the earth is represented

by radiative forcing, which is the ability for GHGs to retain solar irradiances. The approxi-

mate atmospheric content for a perturbation of a gas at time t, M(t), as defined in Wigley

(1998), may be linearised for small perturbations (see Appendix A), and is calculated by the

time-integrated convolution of R(t) and P (t), with each function representing the amount of a

gas left in the atmosphere after time t (its so-called response function), and the perturbation

amount respectively:

Mx(t) =

∫ t

0

Rx(t− ν)Px(ν)dν. (1)

Radiative forcing, F (t), may then be calculated by multiplying M(t) by a constant repre-

senting the specific gas’ radiative efficiency, α:

Fx(t) = αxMx(t). (2)

Radiative forcing cannot be directly used to solve for equivalent emissions, and different

metrics such as the Global Warming Potential (GWP) are used. GWPs offer a constant value

which is defined over a time horizon that scale other GHGs into a common form: generally into

CO2-equivalent (CO2e). A GWP-100 value of 50 for an arbitrary gas, x, can be understood

to mean that gas x contributes 50-times the amount of radiative forcing than CO2 over 100-

years. The Kyoto Protocol utilises GWP values with a time horizon of 100-years to aggregate

different gases into CO2e. These CO2e values then go on to inform policy in congruence with the

transition away from fossil fuels with the least ‘cost’ (both economically and environmentally)

in mind.

As we will show, with the use of Laplace transformations it is possible to define emission

equivalences between two gases with either a sum of exponentials in the time domain, or

a high-degree rational functional in the complex frequency domain. These equivalences are

mathematically complex however, and thus a simplified approximation of equivalence is needed.

In this report, we explore how the use of Laplace transformations can simplify the com-

parison of convolution integrals pertaining to radiative forcing, and survey different functional
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forms of approximations which can be used to represent equivalent emissions of greenhouse

gases, in order to improve upon the current use of GWPs. A discussion will consider the ad-

vantages and disadvantages that different approximations and their functional forms offer to

determine which method is most appropriate to be used for determining approximations of

emissions equivalence. Finally, we will compare our approximations by determining how well

they are able to reproduce radiative equivalence over different timescales.

2 Mathematics of Greenhouse Gas Emissions

2.1 Equations of Radiative Forcing

2.1.1 Response Functions

For most LLGHGs, the amount of gas that remains in the atmosphere after a perturbation

follows exponential decay, approximated using a response function:

Rx(t) = e−
t
τx , (3)

with t representing the time in years after the emission, and τx representing the lifetime of gas

x. Assuming a single pulse emission, the radiative forcing can be calculated using equation

(2). However, for CO2, the response function is more complicated, and its lifetime cannot be

represented by simple exponential decay. Instead, it is approximated by a sum of exponentials:

Rco2(t) = α0 +
n∑
i=1

αie
− t
τi . (4)

where α0 is ‘the fraction of emissions that remain permanently in the atmosphere’ and the

αi represent ‘a fraction that is associated with a certain nominal timescale τi’ (Joos et al.

2013). The exact amount of increments of sums may vary depending on both literature and

purpose (albeit they must satisfy
∑n

i αi = 1), however for the purpose of this report, we allow

n = 3. The choice of constants and respective τ values are calculated in different models which

determine the atmospheric CO2 after pulse emissions of CO2, based on current and projected

redistribution and sequestration of Carbon by the ocean, ‘land biosphere, and other principal

carbon reservoirs’ (Joos et al. 2013). For the purpose of this report, we use the BERN-SAR

model (see Appendix B) and its associated τ and α values.
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2.1.2 Radiative Forcing Formulas

As shown in (2), the amount of radiative forcing a pulse emission of a gas contributes after

t-years is calculated by multiplying its response function by a constant. This may be extended

beyond a pulse function, to an arbitrary function representing a perturbation, using a convo-

lution integral incorporating an arbitrary perturbation function, P (t):

Fx(t) = αxMx(t) = αx

∫ t

0

Rx(t− ν)Px(ν)dν. (5)

It is important to note that a standard rule of convolution integrals is that for a convolution

of a function f and kernel δ, its convolution is simply the original function f :∫ t

0

f(t− ν)δ(ν)dν = f ~ δ = f(t).

2.2 Radiative Forcing Equivalences

2.2.1 Global Warming Potentials

Global Warming Potentials (GWPs) are derived from the time-integrated radiative forcing of

a pulse emission of gas x relative to that of CO2, over a time horizon H:

GWPH =

∫ H
0
Fx(t)dt∫ H

0
Fco2(t)dt

=
αx
αco2
·
∫ H

0
Rx(t)dt∫ H

0
Rco2dt

. (6)

While GWP-100 is the standard definition of emissions equivalence by The Kyoto Protocol,

other commonly utilised GWPs are GWP-20 and GWP-500.

2.2.2 Forcing Equivalent Index

As proposed in Wigley (1998), the Forcing Equivalent Index specifies that two forcings are

equivalent if their scaled concentrations are equal at all times:

αxMx(t) = αx

∫ t

0

Rx(t− ν)Px(ν)dν ≡
FEI

αy

∫ t

0

Ry(t− ν)Py(ν)dν = αyMy(t). (7)

This equivalence offers a starting point from which we can can derive emissions equivalence.
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3 Emissions Equivalence

GWPs’ linear regime does not capture enough information to accurately equate emissions. This

is because CO2 is at equilibrium with the climate and never truly disappears; emissions accu-

mulate indefinitely. CH4, however, is imbalanced with the atmosphere, and largely disappears

after a timescale of decades. It is possible to visualise this difference by comparing a constant

rate of emission of CO2 with a constant rate of emission of CH4, and contrasting these results

with the CO2e values calculated using CH4’s GWP-100 value.

Figure 1: Gas remaining after t-years from con-

stant CO2 and CH4 emissions and CO2e emissions

Figure 2: Gas remaining after t-years from con-

stant CH4 and pulse CO2 emissions

In Figure 1, for constant emissions of CO2, the amount of gas in the atmosphere increases

indefinitely. For constant emissions of CH4, the amount of gas in the atmosphere levels out

after 50-years, with no increase or decrease afterwards. When applying CH4’s GWP-100 value

to constant emissions of CO2, the CO2e mass of CH4 is initially underestimated. At 100-years,

as expected, the gases are equivalent. However, this graph, and thus GWP, erroneously implies

that constant emissions of CH4 would lead to a perpetual rise in the amount of CH4 in the atmo-

sphere, and thus radiative forcing. This phenomenon can also be seen by contrasting constant

emissions of CH4 with a one-off emission of CO2, such as in Figure 2. For constant emissions of

an amount of CH4, for example 1-Tonne per year, the amount of gas in the atmosphere remains

constant as the excess CH4 is quickly cycled through the environment. Contrasting this with

a single 30-Tonne release of CO2, it can be seen that for large values of t, the amount of gas

left in the atmosphere from a single release of CO2 behaves similarly to constant emissions of

CH4. Given that it is clear that a single constant, such as a GWP, cannot accurately determine

equivalent emissions between short-lived gases and CO2, this report surveys different forms of

approximations which can, with low levels of error, offer emissions equivalence.
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3.1 The Laplace Transformation

A function, F (t), which is defined for Re(t) ≥ 0, has a Laplace transformation of:

L{F (t)} = f(s) =

∫ ∞
0

F (t) · e−stdt. (8)

The Laplace transformation offers a convenient method to convert a function of a real variable

into a function of a complex variable, or, from the time domain into the frequency domain

respectively. The benefits of moving into the frequency domain are that convolutions are

treated as multiplication, and exponential functions are treated as rational functions: Given

this, we may neatly represent Mx(t) as a simple multiplication:

L {Mx(t)} = rx(s) · px(s). (9)

As such, using Laplace transformations offer a simple framework to consider emissions

equivalence using simple multiplication and division. Indeed, while it is advantageous to con-

sider emissions in the frequency domain due to their algebraic properties, it is also favourable

due to the representation of exponential decay in the time domain being converted to rational

functions in the frequency domain:

L
{
e−

t
τx

}
=

τx
τx · s+ 1

=
1

s+ 1
τx

.

This is particularly beneficial when it comes to approximating the ratio of two response

functions as is demanded by emissions equivalences. While a sum of exponentials (or a ratio

of said sum) can be approximated using, for example a Taylor’s series, it is more natural to

approximate the ratio of two polynomials by a related, albeit lower degree, rational function.

Another property of the Laplace Transformation is that ‘information’ stored in the higher

domain of the t-domain are represented by inversely proportional values of s; 1 ≤ t ≤ ∞ is

equivalent to 0 ≤ s ≤ 1 and thus small deviations in the s-domain are represented by large

deviations in the t-domain.

3.2 Equivalence Manipulation

By using the equivalence (7), we define equivalence in the s-domain using the Laplace trans-

formation:

L {αxMx} ≡ L {αyMy} = αxrx(s)px(s) ≡ αyry(s)py(s),
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and allow αx and αy to be 1 for further analysis. Given this equivalence in the s-domain, it is

simple to solve for equivalent emissions of gas x given gas y, and vice-versa, and we consider

the equivalence of CO2 and an arbitrary GHG, x, with a single lifetime:

pco2(s) =
rx(s)

rco2(s)
· px(s). (10)

pco2(s) is the equivalent perturbation of CO2 given a perturbation of gas x, in the s-domain.

3.2.1 Response Functions in the Frequency Domain

By using standard formulae for the Laplace transformation, rco2(s) and rx(s) are found.

L {Rx(t)} = rx(s) =
τx

τx · s+ 1

L {Rco2(t)} = rco2(s) =
α0

s
+

α1 · τ1

τ1 · s+ 1
+

α2 · τ2

τ2 · s+ 1
+

α3 · τ3

τ3 · s+ 1

For the equivalence formula given in (10), the ratio of the two response functions being

examined is algebraically equal to a rational function of degrees four. For the purpose of

analysis, we introduce a new function, φx(s) which represents the fraction of the Laplace-

transformed response functions for CO2e referenced to a LLGHG x. In this case, φ(s)−1 may

also be understood to be same description however of gas x-equivalent referenced to CO2.

φx(s) =
rx(s)

rco2(s)
=

s(a+ s)(b+ s)(c+ s)

(d+ s)(e+ s)(f + s)(g + s)
(11)

3.3 Methane

Methane’s lifetime in the atmosphere is approximately 12-years (Wahlen 1993). Using the

BERN-SAR model for lifetimes of CO2, we obtain the following from (11):

φch4(s) =
s · (0.0000184036 + 0.00693631 · s+ 0.271506 · s2 + s3)

3.05806 · 10−7 + 0.000231712 · s+ 0.0189322 · s2 + 0.277681 · s3 + s4
.

The decision to restrict the domain of the function between 0 and 0.2 (5 ≤ t ≤ ∞) is due

to the lack of difference in the amount of gas in the atmosphere after a perturbation of CH4

and CO2. Only after 5-years does a significant difference between the amount of gas in the

atmosphere for a common amount of perturbation begin to show, and it can be said that:

Mch4(t) ≈Mco2(t)
∣∣∣0 ≤ t ≤ 5.
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Figure 3: Exact y = φch4(s) (11)

Following the restriction of the domain, Figure 3 clearly shows that the function is mono-

tonically increasing with no local extrema. Consequently, it is possible to approximate this

function using a lower order rational function to mimic the behaviour of the curve closely.

3.4 Forms of Approximations

Three forms (Type-A, B, and C) of approximations are surveyed: y = a, y = a+b·s
c+s

, and

y = a+b·s
1+c·s+d·s2 .

Type-A approximations are motivated by their similarities with GWPs: a constant which

linearly relates different emissions. Both Form-B and Form-C were chosen by visual inspection

as low order rational functions which resemble the function to be approximated.

3.5 Fitting Methodologies

With the support of Mathematica, three methods of fitting approximations are used.

3.5.1 Pade Approximants

Pade Approximants can be understood to be an approximation of a function by a rational

function of a specific order, whose power series agrees with the function it is approximating.

The variables for a Pade Approximant are the function to be approximated, the degrees of the

approximation, and the point about which the approximation occurs.
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3.5.2 The Minimax Algorithm

A Minimax algorithm approximates a function while minimising the maximum absolute error

of its approximation. However, Mathematica attempts to minimise the maximum relative

error of the approximation. The variables for Minimax minimisation are the function to be

approximated, the degrees of the approximation, and the domain which the function should be

approximated over. The Minimax algorithm is unable to handle functions that are undefined

at any point within the fitting parameters, such as a pole. For φch4(s) in particular, a pole

exists at s = 0. to overcome this, a factor of s is taken out of the function to be approximated,

and the degree of the numerator of the approximation is lowered by 1. The approximation is

made, and s once again multiplies the approximation.

3.5.3 The MSLE

The third method of fitting is the minimising of the mean-squared-logarithmic-error (MSLE)

of the approximation. Similar to the relative error, the MSLE is mostly concerned about

perceptual differences between functions and their approximations. An important quality of

the minimisation of the MSLE is that it is possible to find an approximation whose reciprocal

inverse agrees with the inverse of the approximated function:

MSLE(s) =

∫
(lnφ≈ch4(s)− lnφch4(s))

2ds =

∫
(lnφ≈ch4(s)

−1 − lnφch4(s)
−1)2ds.

By minimising the MSLE, two approximations are found: one which approximates φch4(s),

and one which, when its simple reciprocal inverse is taken, equally approximates φco2(s)
−1φch4(s)

−1.

This symmetric behaviour allows us to simply move back and forth between CO2 and CH4.

3.6 Fitting in the s-domain

3.6.1 Fitting Using Pade Approximants

The Pade Approximant method is utilised around the point s = 0.05. The reason to approx-

imate about this point is due to the method’s behaviour in approximating around a specific

point, and thus while it will approximate exactly at s = 0.05 (t = 20), it will approximate with

similar accuracy at two points s = 0.05 ± a where a is some small arbitrary amount such as

0.02; s = 0.03 and s = 0.07 (t = 33 and t = 14 respectively).
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3.6.2 Fitting Using Minimax

Using the Minimax method, the function is approximated over 0 ≤ s ≤ 1. While it may

seem counter-intuitive to fit the function over an interval that is not of particular interest

(0.2 ≤ s ≤ 1), the decision to ‘extend’ the fit to s = 1 is to apply a bias for higher values of s,

and thus lower values of t. The reasoning for applying this bias is that the Minimax method

treats any interval over which it is minimising as equivalent; for example, 0 ≤ s ≤ 0.1 and

0.1 ≤ s ≤ 0.2 are treated equally. However, values of s are not equal in the t-domain and

are not directly proportional. This means an inherent bias corresponding to longer times is

approximated: while 0.1 ≤ s ≤ 0.2 contains just 5-years of information, 0 ≤ s ≤ 0.1 contains

infinite information. By fitting to s = 1, the algorithm which minimises the function applies

more weight to higher values of s, and thus lower values of t, balancing out the fit.

3.6.3 Minimising the MSLE

To minimise the MSLE, manual fitting is undertaken using the Minimax result’s function as a

starting point.

4 Discussion of Fits in the s-domain

4.0.1 Type-A Approximation

The Type-A approximations (See Appendix C; Figures 6 and 11) offer limited support in

approximating φch4 as constants are unable to produce a curve. This means that while they offer

an approximation at one exact point, they are unable to offer meaningful emissions equivalence,

and correspond more closely to the GWP.

4.0.2 Type-B Approximation

Type-B approximations (see Appendix C; Figures 7, 9 and 12) do exceptionally well in approxi-

mating φch4 , however different methods of fits offer relative merits. While the Pade Approximant

offers a nearly perfect approximation for most of the graph, it fails to approximate as well for

s→ 0, corresponding to longer time-frames. The Minimax and the minimisation of the MSLE

methods yield approximations which only slightly deviate from the original function. However,
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the latter has the advantage that it requires only a single variable, 0.0316056 which is akin to

the Laplace transformation of a response function for a gas with a single lifetime.

4.0.3 Type-C Approximation

By inspection, all Type-C (see Appendix C; Figures 8, 10, and 13) approximations act similarly

to their respective Type-B approximations. This demonstrates that raising the order of approx-

imation is cumbersome, and does not greatly improve on the simpler Type-B approximation.

5 Fits in the t-domain

Given our approximations of emissions equivalence are in the s-domain, it is necessary to convert

them back to the t-domain using the Inverse Laplace Transformation. The standard Laplace

transformation of a convolution can be once again be utilised to move back to the t-domain

and define a function for emissions equivalence:

Pco2(t) =

∫ t

0

Φch4(t− ν)Pch4(ν)dν
∣∣∣Φch4(t) = L−1{φch4(s)}. (12)

Pch4(t) can be treated as an arbitrary function corresponding to a perturbation of CH4. Exam-

ples include δ(t), a, and a · t, pertaining to a pulse emission, constant emissions at a per year,

and changing emissions at a rate of a per year respectively.

5.1 Type-B Forms in the t-domain

Each type of approximation when converted back into the time domain yields different forms.

Due to the Type-B approximations visually yielding desirable results in the s-domain, we

calculate and compare this form in the t-domain using (12) and allowing φch4(s) = a+b·s
c+s

:

Pco2(t) = a

∫ t

0

e−c(t−ν)Pch4(ν)dν − b · c
∫ t

0

e−c(t−ν)Pch4(ν)dν + b

∫ t

0

δ(t− ν)Pch4(ν)dν. (13)

5.2 Goodness of Fit

To determine how well the approximations are fitted, we calculate the radiative forcing from

a standard perturbation, and compare it to the equivalent radiative forcing using the approxi-

mation. As this would normally be exactly equivalent, we determine the goodness of fit of our
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approximation. We compare the radiative forcing for constant emission of CH4, and the ra-

diative forcing from CO2e emissions derived using the approximated Pco2(t). We then compare

these to the GWP-defined equivalence.

5.3 Discussion of Radiative Equivalence

Comparing the approximations’ abilities to reproduce equivalent radiative forcing over a 100-

year (see Appendix D; Figures 14, 15, and 16) time scale offers insights into the affordances

that each approximation holds. Visually, the Pade Approximant is able to reproduce equiv-

alent radiative forcing nearly perfectly. The approximations derived from the Minimax and

minimising of the MSLE yield similar results in that that they are able to accurately reproduce

equivalent radiative forcing with a smaller margin of error than the GWP.

It is noteworthy that although each of the Type-B approximations originate from the com-

mon form a+b·s
c+s

, each of the approximations have a different amount of variables. For the Pade

Approximant, all three a, b, and c variables are populated with different values, whereas for the

Minimax approximation, only b and c are required. For the minimisation of the MSLE, only

variable c is required. Indeed, it is clear that both the Minimax approximation and the MSLE

approximation are visually quite similar, despite the former requiring 2, not 1 variable, thus

indicating that to approximate emissions equivalence, it is not necessary to use a 2-variable

function, but instead a 1-variable function will suffice. These three variables also correspond to

constant values for (13), and as each variable is removed, the approximation becomes simpler:

if a = 0, the first integral disappears, leaving a more simple equivalence of just one integral.

By defining b = 1, as in the MSLE approximation in Figure 12 (see Appendix C), there

is little change in the approximation, which implies emissions equivalence can be accurately

approximated as:

Pco2(t) = Pch4(t)− c
∫ t

0

e−c(t−ν)Pch4(ν)dν.

5.4 Goodness of Fit Calculations

In order to quantify the goodness of each approximation over a specific time-frame, we calculate

the root mean squared relative error (RMSRE) as defined in Despotovic et al. (2016) (see

Appendix E).
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Figure 4: Approximations after 500-years.

The Pade Approximant function does much better than the other two approximations for

100-years (see Appendix F). Interestingly, the Minimax approximation does better than the

other approximations for 20-years, which can likely be explained by the implicit bias applied

when finding the approximation. Both the Minimax and the minimised MSLE functions have

similar RMSRE values, re-affirming that these two approximations are toughly equal.

6 Discussion of Fits

6.1 Pade Approximant

While the Pade Approximant function does indeed yield a better fit over most of the function

for the first 100-years, there are trade-offs that must be considered. First, a consideration

for whether such an exact equivalence is necessary, and whether a complicated function is

applicable for different purposes: to use this simplified form of emissions equivalence with an

overall radiative forcing target in mind, three variables must be solved. Likewise as seen in

Figure 4, while the function seemingly does well over 0 ≤ t ≤ 100, it succumbs to the same

issue that the use of the GWP metric has in that after around 150-years, forcings begin to

diverge to infinity, in conflict with CH4’s imbalance with the atmosphere. As such, the use

of Pade Approximants are unlikely to be the most helpful form of approximation available for

emissions equivalence on timescales of centuries.
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Figure 5: y = φn2o, a non-monotonic function.

6.2 Minimax and MSLE

While both the Minimax and minimisation of the MSLE handle the function similarly, the

MSLE approximation has the benefit that it requires only a single variable to approximate

emissions equivalence, and thus is reasonable to conclude that an approximation of the form

φch4 = s
β+s

is good enough to be used for emissions equivalence between CH4 and CO2. Given

this, we can define emissions equivalence between CO2 and CH4 as the following (finally adding

the constants for each gas back into the equation):

Pco2(t) =
αch4
αco2

Pch4(t)−
αch4
αco2

β

∫ t

0

e−a(t−ν)Pch4(ν)dν (14)

where β is some constant which matches the behaviour of φch4 depending on model for radiative

forcing. This formula also has the benefit of relating pulse emissions of CH4 to emissions of

CO2: data which would be lost otherwise in the comparison between the two emissions.

6.2.1 Limitations

While this functional form and subsequent definition of emissions equivalence may be used for

CH4, it is not possible to extend this for N2O. This is because N2O’s lifetime is approximately

110-years (Prather et al. 2015), which means the behaviour of φn2o differs qualitatively from

φch4 (Figure 5). Notably, while φch4 is strictly increasing for the domain that we are inspecting,

φn2o has a turning point which s
a+s

is unable to reproduce. Furthermore, the form s
a+s

has

an upper limit of 1 when a = 0, and is unable to reproduce the behaviour of φn2o within the

domain we consider: it rises over 1 at approximately s = 0.005 (t = 200) and does not lower to

1 until around s = 5.
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7 Conclusion

In this report, we have explored the possibility of improving upon the current use of GWPs

by offering an alternative approximation of emissions equivalence between Carbon Dioxide and

Methane. By using Laplace transformations to simplify the equations of radiative forcing,

we have considered three types of functional forms to approximate the ratio of the response

functions of Methane over Carbon Dioxide, and used three different methods to obtain approx-

imations. By minimising the mean-square-error of the logarithm of the ratio of the response

functions in the frequency domain, we have obtained an approximation in the form s
a+s

, and

subsequently identified that higher orders of approximations are superfluous. Finally, by util-

ising our approximation and using the inverse Laplace transformation, we have identified that

with low margins of error, it is possible to approximate emissions equivalence of Carbon Diox-

ide and Methane using the equation (14). However, the model suggested in this report is only

as accurate as the assumptions made in the calculations which were used to derive the ap-

proximation. If large deviations occur which are not projected, this model may fail, and new

calculations must be made.

These approximations and their functional forms have multiple implications. Within the

framework of the Kyoto Protocol, such approximations can be used to build a simplified form

of emissions trading (or permit) system, allowing companies to effectively trade the rights to

different gases, while accurately equating one gas to another. Such a framework requires an

accurate regime which correctly values Methane in comparison to Carbon Dioxide, that a linear

model such as the GWP is unfit for.

In conclusion, more research is needed to determine the best approach to an emissions trad-

ing system using the approximations derived in this report, and how well these approximations

are able to fare in a framework such as that organised by the Kyoto Protocol.
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Appendix A Appendices

A.1 Appendix A

Derivation of Linear Relation of GHG

The Radiative Forcing contributed to by Carbon Dioxide is given by α logM where α is some

constant and M is the total mass of CO2 in the atmosphere. M0 is the current mass of CO2 in

the atmosphere. For small contributions (∆M), we linearise around the M0

∆Fco2 = Fco2(M0 + ∆M)− F (M0) = α log(M0 + ∆M)− α logM0

= α log

(
M0 + ∆M

M0

)
= α log

(
1 +

∆M

M0

)
The Taylor’s Series of α log

(
1 + ∆M

M0

)
is then trivially found:

∆Fco2 = α

[
∆M

M0

− ∆M

2M0

2

+ ...

]
≈ α

∆M

M0

≈ αM

Similarly for Methane,

∆Fch4 = α
√
M

or rather

∆Fch4 = α
√
M0 + ∆M − α

√
M0 = α

√
M0

[√
1 +

∆M

M0

− 1

]
.

The inner square-root is then expanded yielding:

∆Fch4 = α
√
M0

[
1 +

∆M

2M0

+ ...− 1

]
≈ α

2
√
M0

∆M ≈ αM

.

A.2 Appendix B

BERN-SAR Model Coefficients from Joos et al. (2013)

α0 α1 α2 α3 τ1 τ2 τ3

0.1994 0.1762 0.3452 0.2792 333.1 39.969 4.110
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A.3 Appendix C

φch4(s) approximations

Figure 6: Type-A Pade, y =

0.58345

Figure 7: Type-B Pade, y =

0.0041409+1.08454s
0.0500429+s

Figure 8: Type-C Pade, y =

0.200987+51.6825s
2.39619+47.4999s+s2

Figure 9: Type-B Minimax

y = 1.02222s
0.0347664+s

Figure 10: Type-C Minimax

y = 35.8867s
1.37857+34.0469s+s2

Figure 11: Type-A MSLE, y =

0.636

Figure 12: Type-B MSLE, y =

s
0.0316056+s

Figure 13: Type-C MSLE, y =

28.8s
1+28.8s−4s2
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A.4 Appendix D

Fits against Radiative Profile

Figure 14: Type-B Pade Ap-

proximant
Figure 15: Type-B Minimax

Figure 16: Type-B

Min{MSLE}

A.5 Appendix E

RMSRE Formula

σn =

√
1

n

∫ n

0

(
Fco2e(t)− Fco2(t)

Fco2e(t)

)2

dt.

A.6 Appendix F

Goodness of Fit using RMSRE

n-years Pade Approximant Minimax Min{MSLE}

20 0.02458 0.01446 0.03144

50 0.01673 0.05698 0.07761

100 0.01385 0.0545 0.08786
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